Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 342: 114352, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517599

RESUMO

In a fasting gastrointestinal tract, a characteristic cyclical rhythmic migrating motor complex (MMC) occur that comprises of three phases: I, II, and III. Among these, phase III contractions propagate from the stomach to the lower intestine in mammals, including humans, dogs, and Suncus murinus (suncus). Apart from the phase III of MMC propagating from the stomach, during the gastric phase II, small intestine-originated strong contractions propagate to the lower small intestine; however, the mechanism of contractions originating in the small intestine has not been clarified. In this study, we aimed to elucidate the role of cholecystokinin (CCK) in small intestinal motility. Administration of sulfated CCK-8 in phase I induced phase II-like contractions in the small intestine, which lasted for approximately 10-20 min and then returned to the baseline, while no change was observed in the stomach. Contractions of small intestine induced by CCK-8 were abolished by lorglumide, a CCK1 receptor antagonist. Gastrin, a ligand for the CCK2 receptor, evoked strong contractions in the stomach, but did not induce contractions in the small intestine. To examine the effect of endogenous CCK on contractions of small intestinal origin, lorglumide was administered during phase II. However, there was no change in the duodenal motility pattern, and strong contractions of small intestinal origin were not abolished by treatment with lorglumide. These results suggest that exogenous CCK stimulates contractions of small intestine via CCK1 receptors, whereas endogenous CCK is not involved in the strong contractions of small intestinal origin.


Assuntos
Motilidade Gastrointestinal , Sincalida , Humanos , Animais , Cães , Sincalida/farmacologia , Complexo Mioelétrico Migratório/fisiologia , Colecistocinina/farmacologia , Estômago , Musaranhos , Receptores da Colecistocinina
2.
Gen Comp Endocrinol ; 331: 114167, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402245

RESUMO

Ghrelin is a gut-derived peptide with several physiological functions, including feeding, gastrointestinal motility, and hormonal secretion. Recently, a host defense peptide, liver-expressed antimicrobial peptide-2 (LEAP2), was reported as an endogenous antagonist of growth hormone secretagogue receptor (GHS-R). The physiological relevance of the molecular LEAP2-GHS-R interaction in mammals has been explored; however, studies on non-mammals are limited. Here, we report the identification and functional characterization of ghrelin and its related molecules in Western clawed frog (Xenopus tropicalis), a known model organism. We first identified cDNA encoding X. tropicalis ghrelin and GHS-R. RT-qPCR revealed that ghrelin mRNA expression was most abundant in the stomach. GHS-R mRNA was widely distributed in the brain and peripheral tissues, and a relatively strong signal was observed in the stomach and intestine. In addition, LEAP2 was mainly expressed in intestinal tissues at higher levels than in the liver. In functional analysis, X. tropicalis ghrelin and human ghrelin induced intracellular Ca2+ mobilization with EC50 values in the low nanomolar range in CHO-K1 cells expressing X. tropicalis GHS-R. Furthermore, ghrelin-induced GHS-R activation was antagonized with IC50 values in the nanomolar range by heterologous human LEAP2. We also validated the expression of ghrelin and feeding-related factors under fasting conditions. After 2 days of fasting, no changes in ghrelin mRNA levels were observed in the stomach, but GHS-R mRNA levels were significantly increased, associated with significant downregulation of nucb2. In addition, LEAP2 upregulation was observed in the duodenum. These results provide the first evidence that LEAP2 functions as an antagonist of GHS-R in the anuran amphibian X. tropicalis. It has also been suggested that the ghrelin/GHS-R/LEAP2 system may be involved in energy homeostasis in X. tropicalis.


Assuntos
Grelina , Receptores de Grelina , Animais , Cricetinae , Humanos , Grelina/genética , Grelina/metabolismo , Xenopus/metabolismo , Receptores de Grelina/metabolismo , Cricetulus , Clonagem Molecular , RNA Mensageiro
3.
J Phys Chem Lett ; 13(40): 9494-9500, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36201238

RESUMO

Cell-coupled field-effect transistor (FET) biosensors have attracted considerable attention because of their high sensitivity to biomolecules. The use of insect cells (Sf21) as a core sensor element is advantageous due to their stable adhesion to sensors at room temperature. Although visualization of the insect cell-substrate interface leads to logical amplification of signals, the spatiotemporal processes at the interfaces have not yet been elucidated. We quantitatively monitored the adhesion dynamics of Sf21 using interference reflection microscopy (IRM). Specific adhesion signatures with ring-like patches along the cellular periphery were detected. A combination of zeta potential measurements and lectin staining identified specific glycoconjugates with low electrostatic potentials. The ring-like structures were disrupted after cholesterol depletion, suggesting a raft domain along the cell periphery. Our results indicate dynamic and asymmetric cell adhesion is due to low electrostatic repulsion with fluidic sugar rafts. We envision the logical design of cell-sensor interfaces with an electrical model that accounts for actual adhesion interfaces.


Assuntos
Colesterol , Lectinas , Animais , Adesão Celular , Glicoconjugados , Insetos , Açúcares , Temperatura
4.
Gen Comp Endocrinol ; 327: 114074, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700795

RESUMO

Cholecystokinin (CCK) is a peptide hormone mainly secreted by small intestinal endocrine I-cells and functions as a regulator of gallbladder contraction, gastric emptying, gastrointestinal (GI) motility, and satiety. The cellular effects of CCK in these peripheral tissues are predominantly mediated via CCK-A receptors which are found in smooth muscles, enteric neurons, and vagal afferent neurons in humans and animal models. Although various functions of CCK have been reported to be neurally mediated, it can also stimulate contraction via the CCK receptor on the smooth muscle. However, the entire underlying neural and cellular mechanisms involved in CCK-induced GI contractions are not clearly understood. Here, we first determined the cDNA and amino acid sequences of CCK and CCK-A receptor along with the distributions of cck mRNA and CCK-producing cells in house musk shrew (Suncus murinus, the laboratory strain named as suncus) and examined the mechanism of CCK-induced contraction in the GI tract. Mature suncus CCK-8 was identical to other mammalian species tested here, and suncus CCK-A receptor presented high nucleotide and amino acid homology with that of human, dog, mouse, and rat, respectively. Suncus CCK mRNA and CCK-producing cells were found mainly in small intestine and colon. In the organ bath study, CCK-8 induced dose-dependent contractions in the suncus stomach, duodenum, and jejunum, and these contractions were inhibited by atropine and CCK-A receptor antagonist. These results suggest that CCK-8-induced contraction is mediated in the myenteric cholinergic neural network and that CCK-A receptor is partly responsible for CCK-8-induced contractions. This study indicates that suncus is a useful animal model to study the functions of CCK involved in GI motility.


Assuntos
Colecistocinina , Receptor de Colecistocinina A , Musaranhos , Animais , Colecistocinina/genética , Clonagem Molecular , Cães , Motilidade Gastrointestinal , Humanos , Camundongos , Contração Muscular , RNA Mensageiro/genética , Ratos , Receptor de Colecistocinina A/genética , Musaranhos/genética , Sincalida/farmacologia
5.
Front Pharmacol ; 13: 858522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462894

RESUMO

Nesfatin-1 is an anorectic peptide expressed in both peripheral tissues and brain areas involved in the regulation of feeding, emotion and emesis. The aim of the present study is to characterize the distribution of NUCB2/nesfatin-1 in Suncus murinus and to investigate the actions of nesfatin-1 to affect gastrointestinal contractility, emesis, food and water intake, and locomotor activity. The deduced amino acid sequence of S. murinus nesfatin-1 using in silico cloning showed high homology with humans and rodents. NUCB2 mRNA was detected throughout the entire brain and in the gastrointestinal tract, including the stomach and gut. Western blot analysis and immunohistochemistry confirmed the expression of nesfatin-1 protein in these regions. The NUCB2 mRNA levels in the hypothalamus, hippocampus and brainstem were significantly decreased, whereas that in the striatum were increased after 24 h starvation compared to ad libitum-fed animals (p < 0.05). In in vitro studies, nesfatin-1 (0.3-1,000 pM) failed to contract or relax the isolated gastric antrum and intestinal segments. In conscious, freely moving animals, intracerebroventricular administration of nesfatin-1 (1-50 pmol) induced emesis (p < 0.05) and suppressed 6-h cumulative food intake (p < 0.05), without affecting the latency to feeding. Nesfatin-1 (25 pmol, i.c.v.) decreased 24-h cumulative food and water intake by 28.3 and 35.4%, respectively (p < 0.01). No significant differences in locomotor activity were observed. In conclusion, NUCB2/nesfatin-1 might be a potent regulator of feeding and emesis in S. murinus. Further studies are required to elucidate the mechanism of actions of this peptide as a mediator linking the brainstem NUCB2/nesfatin-1 to forebrain system.

6.
Gen Comp Endocrinol ; 323-324: 114031, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35331740

RESUMO

Motilin, a peptide hormone consisting of 22 amino acid residues, was identified in the duodenum of pigs in the 1970s. It is known to induce gastrointestinal contractions during the interdigestive state in mammals. Although the motilin gene has been identified in various animal species, it has not been studied in amphibians. Here, we identified the motilin gene in the Japanese fire bellied newt (Cynops pyrrhogaster), and conducted an analysis of tissue distribution, morphological observations, and physiological experiments. The deduced mature newt motilin comprises 22 amino acid residues, like in mammals and birds. The C-terminus of the newt motilin showed high homology with motilin from other species compared to the N-terminus region, which is considered the bioactive site. Motilin mRNA expression in newts was abundant in the upper small intestine, with notably high motilin mRNA expression found in the pancreas. Motilin-producing cells were found in the mucosal layer of the upper small intestine and existed as two cell types: open-and closed-type cells. Motilin-producing cells in the pancreas were also found to produce insulin but not glucagon. Newt motilin stimulated gastric contractions but not in other parts of the intestines in vitro, and motilin-induced gastric contraction was significantly inhibited by treatment with atropine, a muscarinic acetylcholine receptor antagonist. These results indicate that motilin is also present in amphibians, and that its gastrointestinal contractile effects are conserved in mammals, birds, and amphibians. Additionally, we demonstrated for the first time the existence of pancreatic motilin, suggesting that newt motilin has an additional unknown physiological role.


Assuntos
Motilina , Salamandridae , Aminoácidos , Animais , Aves/metabolismo , Motilidade Gastrointestinal , Mamíferos/metabolismo , Motilina/farmacologia , Contração Muscular , RNA Mensageiro/metabolismo , Salamandridae/genética , Salamandridae/metabolismo , Suínos
7.
Neurogastroenterol Motil ; 34(6): e14302, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34846085

RESUMO

BACKGROUND: The aim of this study was to investigate the fundamental mechanisms of colonic motility in the house musk suncus (Suncus murinus) as an established animal model of gut motility. METHODS: To measure gut motility in free-moving conscious suncus, strain gauge force transducers were implanted on the serosa of the colon and gastric body. KEY RESULTS: We recorded diurnal changes in colonic motility and observed the relationship between feeding and colonic motility. Giant migrating contractions (GMCs) of the colon were invariably detected during defecation and tended to increase during the dark period, thereby indicating that colonic motility has a circadian rhythm. Given that GMCs in the suncus were observed immediately after feeding during the dark period, we assume the occurrence of a gastrocolic reflex in suncus, similar to that observed in humans and dogs. We also examined the factors that regulate suncus GMCs. Intravenous administration of 5-HT (100 µg/kg), substance P (10 and 100 µg/kg), calcitonin gene-related peptide (10 µg/kg), and α2 adrenergic receptor antagonist yohimbine (0.5, 1, and 3 mg/kg) induced GMC-like contractions, as did intragastric and intracolonic administration of the transient receptor potential vanilloid 1 agonist, capsaicin (1 mg/kg). CONCLUSIONS & INFERENCES: These results indicate that the fundamental mechanisms of colonic motility in suncus are similar to those in humans and dogs, and we thus propose that suncus could serve as a novel small animal model for studying colonic motility.


Assuntos
Colo , Motilidade Gastrointestinal , Animais , Capsaicina/farmacologia , Cães , Motilidade Gastrointestinal/fisiologia , Musaranhos/fisiologia , Estômago/fisiologia
8.
JCI Insight ; 6(18)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473648

RESUMO

Mechanisms underlying postprandial and obesity-associated plasma ghrelin reductions are incompletely understood. Here, using ghrelin cell-selective insulin receptor-KO (GhIRKO) mice, we tested the impact of insulin, acting via ghrelin cell-expressed insulin receptors (IRs), to suppress ghrelin secretion. Insulin reduced ghrelin secretion from cultured gastric mucosal cells of control mice but not from those of GhIRKO mice. Acute insulin challenge and insulin infusion during both hyperinsulinemic-hypoglycemic clamps and hyperinsulinemic-euglycemic clamps lowered plasma ghrelin in control mice but not GhIRKO mice. Thus, ghrelin cell-expressed IRs are required for insulin-mediated reductions in plasma ghrelin. Furthermore, interventions that naturally raise insulin (glucose gavage, refeeding following fasting, and chronic high-fat diet) also lowered plasma ghrelin only in control mice - not GhIRKO mice. Thus, meal- and obesity-associated increases in insulin, acting via ghrelin cell-expressed IRs, represent a major, direct negative modulator of ghrelin secretion in vivo, as opposed to ingested or metabolized macronutrients. Refed GhIRKO mice exhibited reduced plasma insulin, highlighting ghrelin's actions to inhibit insulin release via a feedback loop. Moreover, GhIRKO mice required reduced glucose infusion rates during hyperinsulinemic-hypoglycemic clamps, suggesting that suppressed ghrelin release resulting from direct insulin action on ghrelin cells usually limits ghrelin's full potential to protect against insulin-induced hypoglycemia.


Assuntos
Grelina/sangue , Grelina/genética , Obesidade/sangue , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Jejum/sangue , Feminino , Glucose/administração & dosagem , Glucose/farmacologia , Técnica Clamp de Glucose , Hipoglicemia/prevenção & controle , Injeções Intraperitoneais , Insulina/administração & dosagem , Insulina/sangue , Insulina/farmacologia , Masculino , Refeições/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/induzido quimicamente
9.
Mol Metab ; 53: 101327, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428557

RESUMO

OBJECTIVE: The hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a recently identified antagonist and an inverse agonist of the growth hormone secretagogue receptor (GHSR). GHSR's other well-known endogenous ligand, acyl-ghrelin, increases food intake, body weight, and GH secretion and is lowered in obesity but elevated upon fasting. In contrast, LEAP2 reduces acyl-ghrelin-induced food intake and GH secretion and is found elevated in obesity but lowered upon fasting. Thus, the plasma LEAP2/acyl-ghrelin molar ratio could be a key determinant modulating GHSR signaling in response to changes in body mass and feeding status. In particular, LEAP2 may serve to dampen acyl-ghrelin action in the setting of obesity, which is associated with ghrelin resistance. Here, we sought to determine the metabolic effects of genetic LEAP2 deletion. METHODS: We generated the first known LEAP2-KO mouse line. Food intake, GH secretion, and cellular activation (c-fos induction) in different brain regions following s.c. acyl-ghrelin administration in LEAP2-KO mice and wild-type littermates were determined. LEAP2-KO mice and wild-type littermates were submitted to a battery of tests (such as measurements of body weight, food intake, and body composition; indirect calorimetry, determination of locomotor activity, and meal patterning while housed in metabolic cages) over the course of 16 weeks of high-fat diet and/or standard chow feeding. Fat accumulation was assessed in hematoxylin & eosin-stained and oil red O-stained liver sections from these mice. RESULTS: LEAP2-KO mice were more sensitive to s.c. ghrelin. In particular, acyl-ghrelin acutely stimulated food intake at a dose of 0.5 mg/kg BW in standard chow-fed LEAP2-KO mice while a 2× higher dose was required by wild-type littermates. Also, acyl-ghrelin stimulated food intake at a dose of 1 mg/kg BW in high-fat diet-fed LEAP2-KO mice while not even a 10× higher dose was effective in wild-type littermates. Acyl-ghrelin induced a 90.9% higher plasma GH level and 77.2-119.7% higher numbers of c-fos-immunoreactive cells in the arcuate nucleus and olfactory bulb, respectively, in LEAP2-KO mice than in wild-type littermates. LEAP2 deletion raised body weight (by 15.0%), food intake (by 18.4%), lean mass (by 6.1%), hepatic fat (by 42.1%), and body length (by 1.7%) in females on long-term high-fat diet as compared to wild-type littermates. After only 4 weeks on the high-fat diet, female LEAP2-KO mice exhibited lower O2 consumption (by 13%), heat production (by 9.5%), and locomotor activity (by 49%) than by wild-type littermates during the first part of the dark period. These genotype-dependent differences were not observed in high-fat diet-exposed males or female and male mice exposed for long term to standard chow diet. CONCLUSIONS: LEAP2 deletion sensitizes lean and obese mice to the acute effects of administered acyl-ghrelin on food intake and GH secretion. LEAP2 deletion increases body weight in females chronically fed a high-fat diet as a result of lowered energy expenditure, reduced locomotor activity, and increased food intake. Furthermore, in female mice, LEAP2 deletion increases body length and exaggerates the hepatic fat accumulation normally associated with chronic high-fat diet feeding.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Grelina/análogos & derivados , Secretagogos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/deficiência , Peptídeos Catiônicos Antimicrobianos/genética , Dieta Hiperlipídica/efeitos adversos , Feminino , Grelina/administração & dosagem , Grelina/metabolismo , Hormônio do Crescimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Neuropeptides ; 90: 102187, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34450431

RESUMO

Ghrelin is a multifunctional gut peptide with a unique structure, which is modified by a medium chain fatty acid at the third serine by ghrelin O-acyl transferase (GOAT). It is well known that the major source of plasma ghrelin is the stomach, but the transcriptional regulation of gastric ghrelin and GOAT is incompletely understood. Here, we studied the involvement of the nuclear receptors REV-ERBα and REV-ERBß on ghrelin and GOAT gene expression in vivo and in vitro. Reverse-transcriptase polymerase chain reaction analysis showed that REV-ERBα and REV-ERBß mRNAs were expressed in the stomach and a stomach-derived ghrelin cell line (SG-1 cells). In vivo experiments with mice revealed the circadian rhythm of ghrelin, GOAT, and REV-ERBs. The peak expression of ghrelin and GOAT mRNAs occurred at Zeitgeber time (ZT) 4, whereas that of REV-ERBα and REV-ERBß was observed at ZT8 and ZT12, respectively. Treatment of SG-1 cells with SR9009, a REV-ERB agonist, led to a significant reduction in ghrelin and GOAT mRNA levels. Overexpression of REV-ERBα and REV-ERBß decreased ghrelin and GOAT mRNA levels in SG-1 cells. In contrast, small-interfering RNA (siRNA)-mediated double-knockdown of REV-ERBα and REV-ERBß in SG-1 cells led to the upregulation in the expression of ghrelin and GOAT mRNAs. These results suggest that REV-ERBs suppress ghrelin and GOAT mRNA expression.


Assuntos
Aciltransferases/biossíntese , Grelina/metabolismo , Grelina/farmacologia , Proteínas de Membrana/biossíntese , Receptor ErbB-2/genética , Estômago/metabolismo , Aciltransferases/genética , Animais , Linhagem Celular , Ritmo Circadiano , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Pirrolidinas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Estômago/efeitos dos fármacos , Tiofenos/farmacologia
11.
Mol Biol Rep ; 48(7): 5513-5518, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34302584

RESUMO

Pyridoxine (PN), one of the vitamers of vitamin B6, plays an important role in the maintenance of epidermal function and is used to treat acne and rough skin. Clinical studies have revealed that PN deficiency causes skin problems such as seborrheic dermatitis and stomatitis. However, the detailed effects of PN and its mechanism of action in epidermal function are poorly understood. In this study, we examined the effects of PN on epidermal function in normal human epidermal keratinocytes and found that PN specifically causes an increase in the expression of profilaggrin mRNA, among marker genes of terminal epidermal differentiation. In addition, PN treatment caused an increase in the production of filaggrin protein in a concentration-dependent manner. Treatment with P2x purinoceptor antagonists, namely, pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid) tetrasodium salt hydrate and TNP-ATP hydrate, induced an increase in the filaggrin protein levels. Moreover, we showed that elevated filaggrin production induced upon PN treatment was suppressed by ATP (known as P2x purinoceptor agonist). This study is the first to report that PN causes an increase in filaggrin transcription and production, and these results suggest that PN-induced filaggrin production may be a useful target as a daily care component in atopic dermatitis, wherein filaggrin levels are specifically reduced.


Assuntos
Proteínas de Filamentos Intermediários/genética , Queratinócitos/metabolismo , Piridoxina/metabolismo , Células Cultivadas , Epiderme/metabolismo , Proteínas Filagrinas , Regulação da Expressão Gênica , Humanos , Piridoxina/farmacologia
12.
J Neuroendocrinol ; 33(3): e12961, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33675127

RESUMO

Under severe calorie restriction (CR), the ghrelin-growth hormone axis in mice is involved in the maintenance of plasma glucose levels. Ghrelin, a stomach-derived acylated peptide, is up-regulated by the sympathetic nerve in the negative energy status. Central corticotrophin-releasing factor receptor (CRF-R) signalling stimulates the sympathetic tone. The present study aimed to examine the effect of central CRF-R signalling on the maintenance of plasma glucose concentrations in severe calorie-restricted mice with the involvement of ghrelin. Intracerebroventricular injections of urocorin-1 and urocorin-2, which are natural ligands for CRF-R1 and CRF-R2, elevated plasma ghrelin concentrations and ghrelin elevation with an i.c.v. injection of urocorin-1 was cancelled by atenolol (ß1 adrenergic receptor antagonist) administration. We then established a mice model of 60% CR and found that the administration of [d-Lys3]-GHRP-6 (a ghrelin receptor antagonist) in mice under 60% CR reduced the plasma glucose concentration more compared to the vehicle mice. Similarly, the atenolol injection in mice under 60% CR significantly reduced the plasma glucose concentration, which was rescued by the co-administration of ghrelin. An i.c.v. injection of the alpha helical CRH, a non-selective corticotrophin-releasing factor receptor antagonist, in mice under 60% CR significantly reduced the plasma glucose concentration, although the co-administration of α-helical CRH with ghrelin maintained plasma glucose levels. These results suggest that central CRF-R signalling is involved in the maintenance of plasma glucose levels in mice under severe CR via the sympathetic-ghrelin pathway.


Assuntos
Glicemia/metabolismo , Restrição Calórica , Grelina/fisiologia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Transdução de Sinais/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Atenolol/farmacologia , Hormônio Liberador da Corticotropina/farmacologia , Grelina/metabolismo , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Grelina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos
14.
Curr Opin Endocrinol Diabetes Obes ; 28(2): 238-242, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33394720

RESUMO

PURPOSE OF REVIEW: Ghrelin was discovered in 1999; extensive research and clinical studies on ghrelin have been published in the last 20 years. Physiological research on ghrelin ranges from its appetite-stimulating effects to its association with energy homeostasis. The physiological effects of ghrelin in the gastrointestinal tract and its relevance in the pathological conditions of the gastrointestinal tract have gradually become clearer. The purpose of the review is to provide current information on ghrelin cell biology and physiology, particularly in the gastrointestinal tract. RECENT FINDINGS: Ghrelin-producing cells in the stomach are characterized as X/A-like cells, but immunohistochemical analyses have revealed co-expression of several secreted proteins and hormones in ghrelin-producing cells such as nesfatin-1, somatostatin, and pancreastatin. Furthermore, the local physiological roles and/or mechanisms of ghrelin in gastrointestinal functions such as gastric motility and inflammation are discussed. SUMMARY: Ghrelin is a brain-gut hormone with a wide range of physiological actions; hence, it is important to understand its effects on the physiological functions of the gastrointestinal tract to elucidate the biological significance of ghrelin.


Assuntos
Trato Gastrointestinal , Grelina , Apetite , Fenômenos Fisiológicos Celulares , Humanos , Estômago
15.
Cell Biol Int ; 44(1): 62-69, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31293061

RESUMO

Motilin, a 22-amino-acid peptide produced in the upper small intestine, induces strong gastric contraction in fasted state. In many rodents, motilin and its cognate receptors exist as pseudogenes, which has delayed motilin research in the past decades. Recently, the house musk shrew (Suncus murinus) was developed as a useful model for studying motilin and gastrointestinal motility. However, due to a lack of motilin-producing cell lines and difficulties in culturing small intestinal cells, the regulatory mechanisms of motilin secretion and its messenger RNA (mRNA) transcription have remained largely unclear. In this study, we generated small intestinal organoids from S. murinus for the first time. Using methods similar to mouse organoid generation, we found crypt-like budding structures 3 days after isolating intestinal tissues. The organoids grew gradually with time. In addition, the generated organoids were able to be passaged and maintained for 6 months or longer. Motilin messenger RNA (mRNA) and immunopositive cells were observed in both S. murinus intestinal organoids and primary tissues. This is the first report of intestinal organoids in S. murinus, and our results suggest that S. murinus intestinal organoids could be useful for analyzing motilin secretion and transcription.

16.
Gen Comp Endocrinol ; 285: 113294, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585115

RESUMO

Motilin and ghrelin were identified in the pheasant by molecular cloning, and the actions of both peptides on the contractility of gastrointestinal (GI) strips were examined in vitro. Molecular cloning indicated that the deduced amino acid sequences of the pheasant motilin and ghrelin were a 22-amino acid peptide, FVPFFTQSDIQKMQEKERIKGQ, and a 26-amino acid peptide, GSSFLSPAYKNIQQQKDTRKPTGRLH, respectively. In in vitro studies using pheasant GI strips, chicken motilin caused contraction of the proventriculus and small intestine, whereas the crop and colon were insensitive. Human motilin, but not erythromycin, caused contraction of small intestine. Chicken motilin-induced contractions in the proventriculus and ileum were not inhibited by a mammalian motilin receptor antagonist, GM109. Neither atropine (a cholinergic receptor antagonist) nor tetrodotoxin (a neuron blocker) inhibited the responses of chicken motilin in the ileum but both drugs decreased the responses to motilin in the proventriculus, suggesting that the contractile mechanisms of motilin in the proventriculus was neurogenic, different from that of the small intestine (myogenic). On the other hand, chicken and quail ghrelin did not cause contraction in any regions of pheasant GI tract. Since interaction of ghrelin and motilin has been reported in the house musk shrew, interaction of two peptides was examined. The chicken motilin-induced contractions were not modified by ghrelin, and ghrelin also did not cause any contraction under the presence of motilin, suggesting the absence of interaction in both peptides. In conclusion, both the motilin system and ghrelin system are present in the pheasant. Regulation of GI motility by motilin might be common in avian species. However, absence of ghrelin actions in any GI regions suggests the avian species-related difference in regulation of GI contractility by ghrelin.


Assuntos
Aves/metabolismo , Trato Gastrointestinal/fisiologia , Grelina/farmacologia , Motilina/farmacologia , Contração Muscular/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Atropina/farmacologia , Sequência de Bases , Galinhas , Clonagem Molecular , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/efeitos dos fármacos , Grelina/química , Grelina/genética , Humanos , Masculino , Motilina/química , Motilina/genética , Proventrículo/efeitos dos fármacos , Codorniz , Ratos , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeos/metabolismo , Tetrodotoxina/farmacologia
17.
J Smooth Muscle Res ; 56(0): 69-81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33473062

RESUMO

Gastric contractions show two specific patterns in many species, migrating motor contractions (MMC) and postprandial contractions (PPCs), that occur in the fasted and fed states, respectively. In this study, we examined the role of somatostatin (SST) in gastric motility both in vivo and in vitro using the Asian house shrew (Suncus murinus). We performed in vivo recordings of gastric motility and in vitro organ bath experiments using S. murinus, which was recently established as a small laboratory animal for use in tests of gastrointestinal motility. SST (1.65 µg kg-1 min-1) was intravenously administered during phase II of MMC and PPCs. Next, the effect of SST on motilin-induced gastric contractions at phase I of MMC was measured. Cyclosomatostatin (CSST), an SST receptor antagonist, was administered at the peak of phase III of MMC. In addition, the effect of SST (10-11-10-9 M) on motilin-induced gastric contractions was evaluated using an organ bath experiment in vitro. In conscious, free-moving S. murinus, the administration of SST decreased the occurrence of the spontaneous phase II of MMC and PPCs. Pretreatment with SST and octreotide suppressed the induction of motilin-induced gastric contractions both in vivo and in vitro. Administration of CSST before the peak of spontaneous phase III contractions had no effect on gastric contractions. Endogenous SST is not involved in the regulation of gastric MMC and PPCs, but exogenous SST suppresses spontaneous gastric contractions. Thus, SST would be good for treating abnormal gastrointestinal motility disorders.


Assuntos
Motilidade Gastrointestinal/efeitos dos fármacos , Somatostatina/farmacologia , Animais , Depressão Química , Feminino , Técnicas In Vitro , Masculino , Motilina/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Complexo Mioelétrico Migratório/efeitos dos fármacos , Período Pós-Prandial , Musaranhos , Somatostatina/fisiologia , Somatostatina/uso terapêutico
18.
Artigo em Inglês | MEDLINE | ID: mdl-31594654

RESUMO

Alteration in the gastrointestinal (GI) motility and transit comprises an important component of the functional gastrointestinal disorders (FGID). Available animal GI motility and transit models are to study symptoms (delayed gastric emptying, constipation, diarrhea) rather than biological markers to develop an effective treatment that targets the underlying mechanism of altered GI motility in patients. Animal data generated from commonly used methods in human like scintigraphy, breath test and wireless motility capsule may directly translate to the clinic. However, species differences in the control mechanism or pharmacological responses of GI motility may compromise the predictive and translational value of the preclinical data to human. In this review we aim to provide a summary on animal models used to mimic GI motility alteration in FGID, and the impact of the species differences in the physiological and pharmacological responses on the translation of animal GI motility and transit data to human.


Assuntos
Gastroenteropatias/diagnóstico , Motilidade Gastrointestinal/fisiologia , Trânsito Gastrointestinal/fisiologia , Animais , Feminino , Humanos , Masculino , Resultado do Tratamento
19.
Dev Comp Immunol ; 100: 103427, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31278953

RESUMO

The intestinal epithelial monolayer forms a mucosal barrier between the gut microbes and the host tissue. The mucosal barrier is composed of mucins and antimicrobial peptides and proteins (AMPs). Several animal studies have reported that Paneth cells, which occupy the base of intestinal crypts, play an important role in the intestinal innate immunity by producing AMPs, such as lysozyme, Reg3 lectins, α-defensins, and group IIA secretory phospholipase A2 (GIIA sPLA2). The house musk shrew (Suncus murinus) has only a few intestinal commensal bacteria and is reported to lack Paneth cells in the intestine. Although the expression of lysozyme was reported in the suncus intestine, the expression of other AMPs has not yet been reported. Therefore, the current study was focused on GIIA sPLA2 expression in Suncus murinus. GIIA sPLA2 mRNA was found to be most abundant in the spleen and also highly expressed in the intestine. Cells expressing GIIA sPLA2 mRNA were distributed not only in the crypt, but also in the villi. In addition, intragastric injection of lipopolysaccharide increased GIIA sPLA2 expression in the small intestine of suncus. These results suggest that suncus may host unique AMP-secreting cells in the intestine.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Fosfolipases A2 do Grupo II/metabolismo , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Musaranhos/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Clonagem Molecular , Feminino , Fosfolipases A2 do Grupo II/genética , Fosfolipases A2 do Grupo II/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Masculino , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , Musaranhos/genética , Musaranhos/metabolismo , Baço/imunologia , Baço/metabolismo
20.
Can J Physiol Pharmacol ; 97(10): 909-915, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31100203

RESUMO

Molecular hydrogen (H2) showed protection against various kinds of oxidative-stress-related diseases. First, it was reported that the mechanism of therapeutic effects of H2 was antioxidative effect due to inhibition of the most cytotoxic reactive oxygen species, hydroxy radical (•OH). However, after chronic administration of H2 in drinking water, oxidative-stress-induced nerve injury is significantly attenuated even in the absence of H2. It suggests indirect signaling of H2 and gastrointestinal tract is involved. Indirect effects of H2 could be tested by giving H2 water only before nerve injury, as preconditioning. For example, preconditioning of H2 for certain a period (∼7 days) in Parkinson's disease model mice shows significant neuroprotection. As the mechanism of indirect effect, H2 in drinking water induces ghrelin production and release from the stomach via ß1-adrenergic receptor stimulation. Released ghrelin circulates in the body, being transported across the blood-brain barrier, activates its receptor, growth-hormone secretagogue receptor. H2-induced upregulation of ghrelin mRNA is also shown in ghrelin-producing cell line, SG-1. These observations help with understanding the chronic effects of H2 and raise intriguing preventive and therapeutic options using H2.


Assuntos
Grelina/metabolismo , Hidrogênio/administração & dosagem , Doenças Neurodegenerativas/terapia , Neuroproteção/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/terapia , Animais , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Ingestão de Líquidos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Grelina/sangue , Humanos , Doenças Neurodegenerativas/sangue , Estresse Oxidativo/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/sangue , Receptores de Grelina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...